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Abstract
In clinical trials and other follow-up studies, it is natural that a response variable is
repeatedly measured during follow-up and the occurrence of some key event is also
monitored. There has been a considerable study on the joint modelling of these
measures together with information on covariates. The joint modelling of such
serial outcomes and the time-to-event data looks a bit complicated. Computational
complexities arise due to the presence of subject specific random effects. The
primary objective of this project is to obtain the estimates of the parameters. In the
absence of any closed form solution for the estimating equations, a computational
intensive method is proposed. Several sets of simulation studies are performed
using the R Software (http://cran.r-project.org/) to study the performance
of the proposed Monte Carlo EM (MCEM) technique under small sample.

This project is actually motivated by a data set concerning longitudinal out-
comes of subjects involved in a study on muscular dystrophy syndrome among the
children caused by deletion, duplication or point mutation of the Dystrophin gene
located on X-chromosome. These values consist of observations on ten different
muscles that are responsible for walking. Two time-to-event indicators are also
observed over different time points. These are time taken by a patient to walk 4
steps and to get up from lying state. Censoring occurs if a person fails to complete
the four steps in 1 min or fails to stand up within 40 s. As both the causes are
highly dependent, there is no harm in assuming that both the failures occur si-
multaneously. These scores, observed up to failure from any of the causes for each
subject, are ordinal in nature. Our interest is on characterizing the relationship
between failure time (due to any one of the causes) and the longitudinal outcomes.
In this study only the first one (complete the four steps in 1 min) is used, which
appears to be more severe according to the doctors.
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1 Introduction

Repeated measurement studies, in particular, longitudinal studies, are important
tools in epidemiological, clinical and social science research. Repeated measure
models usually include an underlying "‘functional"’ relationship between at least
one of the predictor variables and observations within individuals. A common type
of repeated measure data is longitudinal data where the observations are ordered
by time or position in space.

Longitudinal models with linear relationship between outcomes and covariates
are quite popular in practice. In such studies, measurements of a subject at one
time point may depend on measurement on previous time points. The observations
corresponding to each individual (cluster) may be correlated. Different subjects,
however, are assumed to be independent. Ignoring this correlation between mea-
surements of a subject in the context of regression model may be fatal.

Mixed effects models for repeated measures data have become popular because
of their flexible covariance structure. Such models allow for non-constant corre-
lation among the observations. Moreover, in mixed effects models it is assumed
that individuals’ response follow a functional form with parameters varying among
individuals.

In practice, longitudinal data and survival data frequently arise together. For
example, in many medical studies, we often collect patients’ information (e.g.,
blood pressures) repeatedly over time and we are also interested in the time to
recovery or recurrence of a disease. Longitudinal data and survival data are often
associated in some ways. The time to event may be associated with the longitu-
dinal trajectories. Separate analyses of longitudinal data and survival data may
lead to inefficient inference. Joint models of longitudinal and survival data, on
the other hand, incorporate all information simultaneously and provide valid and
efficient inferences.

A typical model setting is to assume a mixed-effects model for the longitudinal
data and a Cox model or an accelerated failure time (AFT) model for the survival
data, with the two models sharing some random effects or variables. The likeli-
hood method is often used, implemented by EM algorithms.
In the context of joint modeling it is necessary to establish a clear framework to
distinguish terminology from longitudinal and time-to-event processes. We are
interested in two processes, the longitudinal Y and time-to-event T . When the
event is not observed, the censoring (C) occurs.

There are two strategies to factorize the joint density of (Y , T ) (Little(1995))
based on model interpretations, and consequently suitability for individual prob-
lems. These are Selection model and Pattern mixture model which factorizes [Y ,
T ] as
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Selection model Pattern mixture model
[Y ,T ] = [T |Y ][Y ] [Y ,T ] = [Y |T ][T ]

Mathematically speaking, both models describe exactly the same joint distri-
bution, but their statistical interpretations are different. When it is of interest
to have inference on time to event parameters, selection model is used. On the
contrary, when primary interest is on the longitudinal trajectory, which might be
associated with an event pattern, pattern mixture model is commonly used. This
implies that, the two approaches lead to different understanding and inferences on
the model parameters.

Both selection model and pattern mixture model can be extended to incor-
porate random effects resulting in random selection model and random pattern
mixture model respectively.

Y T

U

Y T

U

Figure 1: Graphical representation of random selection model (left) and random pattern
mixture model (right)

In this circumstance the joint distribution of repeated measurement Y , event
times T and random effects U can be expressed as

Random Selection model Random Pattern mixture model
[Y ,T ,U ] = [U ][Y |U ][T |Y ,U ] [Y ,T ,U ] = [U ][T |U ][Y |T ,U ]

= [U ][Y |U ][T |Y ] = [U ][T |U ][Y |T ]

The joint distribution of Y , T and U can be visualized in figure 1. The absence
of edge indicates conditional independence between two vertices of the edge, given
the third vertice involved in the graph. Throughout this dissertation whenever
joint model will be considered, we will use selection model.

The primary objective in joint modeling is to find reliable estimates of the pa-
rameters involved in the model along with their standard errors. Method of max-
imum likelihood (ML) estimators is the most widely used estimation procedure.
Because of the complicated nature of the likelihood, no closed form solution of the
likelihood equation is available. Some iterative procedure (e.g. Newton-Raphson
or Fisher’s Scoring) is applied to get the estimates of the parameters.
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In early literature on joint models, time-to-event data are modeled parametri-
cally, which facilitates, in principle straightforward likelihood inference (Schluchter
(1992), Pawitan and Self(1993)). Later on, proportional hazard models are used
for time-to-event data. Considerable literature (DeGruttola and Tu (1994), Wulf-
son and Tsiatis (1197), Henderson et al. (2000), Guo and Carlin (2004), Schluchter
(1192), Hogan and Laired (1997) and Ten Have et al. (2000)) is available on se-
lection models where the joint density of repeated measures vector and failure
time is obtained as the product of the conditional density of the failure time given
the longitudinal outcomes and the marginal density of these outcomes. An alter-
native class of models is called pattern mixture models (Wu and Bailey (1989),
Little (1954)) where the longitudinal response is modeled conditional on the sur-
vival time and the primary interest is on estimating the parameters of that model.
More specifically the selection model would answer the question regarding how
one’s response on the severity of the disease affects death (failure) whereas the
pattern mixture model would demonstrate the pattern of severity of the disease
given one’s death time.

Joint modeling of survival and longitudinal data has been considered earlier
by Wulfson and Tsiatis (1997), Ratcliffe et al. (2004), Wu and Carroll (1988) and
others. Several attempts have been made to develop a link link between the lon-
gitudinal outcomes and the survival data (Henderson et al. (2000), Huang et al.
(2001), Wang and Taylor (2001), Xu and Zeger (2001)). An excellent summary on
the use of linear and generalized linear models in analyzing incomplete longitudinal
and time-to-event data can be found in Hogan and Laired (1997). More recently,
Chakraborty and Das (2010), Chakraborty (2014) have considered MCEM based
inference for joint models. Most of the models in these connections assume that
subject-level effects are the adequate surrogate for the unobserved factors linking
the longitudinal outcomes with the time-to-failure data so that given the subject-
level link, the repeated measures and failure times are conditionally independent.
This dissertation is organized as follows: Section 2 deals with the model and cor-
responding methodology. After considering AFT model for time-to-event data
and linear mixed effects model for longitudinal data, an MCEM based inference
method is proposed. In the next section, the performance of the proposed algo-
rithm is judged by a small sample simulation study. Muscular syndrome data is
analyzed in Section 4. This dissertation ends with some discussions.

2 The model and methodology

2.1 Model for the longitudinal data

It is often modelled by linear mixed-effects model as,

yij = µ+ αxij + bi + εij; 1 ≤ j ≤ ni, 1 ≤ i ≤ N (1)
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where N stands for the number of subject involved in a study, ni stands for the
number of longitudinal observations taken on the ith subject, yij is the response
for subject i at time point j, bi is the subject specific random effect, xij is the
realization of a single covariate at time point j and εij is the standardized random
error.

We have assumed that bi ∼ N(0, σ2
b ), εij ∼ N(0, 1) and they are independently

distributed for j = 1(1)ni moreover εijs’ are i.i.d when bi is specified.
However, this linear mixed-effects model can accommodate more than one co-

variates. Sometimes some non-linear model may also be used.

Longitudinal Data

yi = {yij(tij); 1 ≤ j ≤ ni}

Survival Data

Tij = min
(
T ?ij , Cij

)
; 1 ≤ j ≤ ni

Subject-specific random effects

bi ∼ N(0, σ2b )

e.g. Linear
mixed-effects
model

e.g. Acceler-
ated failure
time model

Figure 2: Schematic diagram for joint model

2.2 Model for time-to-event

To model the time-to-event data which is the second component of the joint model,
Cox Proportional Hazard Model is often used. However, in some situations, as an
alternative Accelerated Failure Time (AFT) model can also be used. Beside giving
some computational advantage this AFT model have some other advantages too.
The choice of AFT model is obviously debatable, however, for the present work
we will confine ourselves to AFT model only. For the present work AFT model,
with underlying distribution as log-normal, can be expressed as,

log Tij = β + bi (2)
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i.e. log Tij ∼ N ((β + bi), σ
2
T ), say. Tij is the minimum of actual event time T ?ij

and censoring time Cij at time point j for patient i. Here we define the censoring
indicator variables δij as δij = I(T ?ij ≤ Cij), i.e.

δij = 1; if actual event time is recorded
= 0; if event time is censored to the right

We assume that the censoring of survival data and the assessment process of
longitudinal measurements are non informative. Here the parameter vector is
θ = (µ, α, β, σb)

′.

It is to be noted that both the models (1) and (2) involve the same random
effect bi. This subject specific random effect bi correlates both the models and it
is easy to note that given this specific random effect bi, model (1) and model (2)
are independent.

2.3 Construction of the joint Likelihood function

In this project work we are dealing with selection model i.e. the joint density of
observed event time tij and longitudinal score yij at time point j is obtained as
the product of the conditional density of the event time (or failure time) given
the longitudinal outcome and the marginal density of the longitudinal outcome.
Hence we obtain the joint likelihood for subject i as follows:

Li(θ) =

ni∏
j=1

f(yij, log tij|θ)

=

∫
bi

ni∏
j=1

g1(log tij|yij, bi)× g2(yij|bi)× π(bi)dbi

=

∫
bi

ni∏
j=1

g1(log tij|bi)× g2(yij|bi)× π(bi)dbi

=

∫
bi

liJdbi (3)

where liJ =
∏ni

j=1 g1(log tij|bi)× g2(yij|bi)× π(bi).

Finally, we get the complete likelihood as,

L(θ) =
N∏
i=1

Li(θ) (4)
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2.4 Monte Carlo EM (MCEM) based inference

Here the objective is to estimate the model parameters. We use Monte Carlo EM
(MCEM) technique to find the maximum likelihood estimates of the parameters.

Let L(θ) be the likelihood of the observed data for all the individuals and l(θ)
be the corresponding log-likelihood function. We need to find the score vector and
Fisher’s information matrix for estimating the parameters involved in the joint
model iteratively. Let Sθ be the overall score vector. Then,

Sθ =
∂

∂θ
l(θ)

=
∂

∂θ
logL(θ)

=
∂

∂θ
log

N∏
i=1

{∫
bi

liJdbi

}

=
∂

∂θ

N∑
i=1

log

{∫
bi

liJdbi

}

=
N∑
i=1

1{∫
bi
liJdbi

} × ∂

∂θ

{∫
bi

liJdbi

}

=
N∑
i=1

1{∫
bi
liJdbi

} ×{∫
bi

∂

∂θ
liJdbi

}

=
N∑
i=1

1{∫
bi
liJdbi

} ×{∫
bi

∂

∂θ
log liJ × liJdbi

}

=
N∑
i=1

{∫
bi

(
∂

∂θ
log liJ

)
× liJ∫

bi
liJdbi

dbi

}
(5)

Now,

liJ∫
bi
liJdbi

=

∏ni

j=1 g1(log tij|bi)× g2(yij|bi)× π(bi)∫
bi

∏ni

j=1 g1(log tij|bi)× g2(yij|bi)× π(bi)dbi

⇒ h (bi|yij, log tij) ∝
ni∏
j=1

g1(log tij|bi)× g2(yij|bi)× π(bi) (6)

= conditional density of bi given data
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Hence, from (5),

Sθ =
N∑
i=1

{∫
bi

(
∂

∂θ
log liJ

)
× h (bi|yij, log tij) dbi

}

=
N∑
i=1

Ebi|yij ,log tij

(
∂

∂θ
log liJ

)

=
N∑
i=1

Ebi|data

(
∂

∂θ
log liJ

)

=
N∑
i=1

Ebi|data (S?θi) ; S?θi is conditional score vector for subject i (7)

In the proposed algorithm, given yij and log tij, unknown bi’s are simulated
from equation (6) using the Metropolis Sampler taking some suitable proposal.
These bi’s are then used to compute Ebi|data (S?θi) which is approximated by Monte
Carlo method i.e.

Ebi|yij ,log tij (S?θi) '
1

(R− burnin)

(R−burnin)∑
`=1

S?θi
(`) (8)

where R (here 10000), is the number of random observations generated initially
by the Metropolis sampler and burnin is the size of the burnt in sample, taken as
10 per cent of R. Therefore using (7) we have the approximate expression for the
overall score vector Sθ as,

Sθ '
N∑
i=1

 1

(R− burnin)

(R−burnin)∑
`=1

S?θi
(`)

 (9)

The overall information matrix is obtained by differentiating Sθ with respect
to θ, multiplying it with a minus one and finally taking its expectation i.e.

I(θ) = Eθ

(
− ∂

∂θ
Sθ

)
and in a similar fashion, as in (6), it can also be expressed as the sum of

conditional information matrices as follows,
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− ∂

∂θ
Sθ = −

N∑
i=1

∂

∂θ
Ebi|yij ,log tij (S?θi)

⇒ I(θ) =
N∑
i=1

Ebi|yij ,log tij

(
− ∂

∂θ
S?θi

)

⇒ I(θ) =
N∑
i=1

I(θ)?i (10)

From (6), expression for the conditional density of h (bi|yij, log tij) without the
normality constant can be given by the help of individual densities as follows,

g1(log tij|bi) ∝
1

σT
exp

{
− 1

2σ2
T

(log tij − β − bi)2
}

g2(yij|bi) ∝ exp

{
−1

2
(yij − µ− αxij − bi)2

}
π(bi) ∝

1

σb
exp

{
− 1

2σ2
b

b2i

}
(11)

So that,

h (bi|yij, log tij) ∝
ni∏
j=1

{
1

σT
φ

(
log tij − β − bi

σT

)}δij
×
{

1− Φ

(
log cij − β − bi

σT

)}1−δij

×φ (yij − µ− αxij − bi)

× 1

σb
φ

(
bi
σb

)
(12)

The main challenge in the likelihood inference for joint models is the com-
putational complexity, since numerical methods or Monte Carlo methods can be
very computationally intensive when the dimension of the random effects is not
small. Moreover, convergence of the EM algorithms can sometimes be an issue.
Computations of score function and information matrix are given in Appendix A.
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2.5 MCEM algorithm in a nutshell

Step 1: Choose an initial estimate of θ, say, θ(0) (using some suitable techniques)

Step 2: Set k = 0

Step 3: Generate R (10000, say) observations from h(bi|yij, log tij) using Metropolis
sampler (a lot of difficulties involved!) taking some suitable proposal
(Markov Chain)

Step 4: Approximate the expectations involved in score function and information ma-
trix (E-step with Monte Carlo)

Step 5: Update the estimates using scoring method as,

θ(k+1) = θ(k) + I
(
θ(k)

)−1
S
(
θ(k)

)
(M-step with Fisher’s Scoring)

Step 6: Set k = k + 1

Step 7: Continue Step 2-6 till convergence
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3 Simulation studies

In this section we have performed several sets of simulation studies with different
choices of true values of the parameters. We have fixed the number of subjects
N at 25 and there are n = 4 longitudinal observations on each of them. Three
different choices of σT are used for the simulation studies. To find initial esti-
mates, we have fitted both the sub models separately. For linear mixed-effects
model, we have used the R package nlme (http://cran.r-project.org/web/
packages/nlme/index.html) and for accelerated failure time model we have used
the package survival (http://cran.r-project.org/web/packages/survival/
index.html). These estimates are taken to be the initial estimates which make
the convergence faster. Corresponding R codes can be found in Appendix B.

Simulation: 1
Data generated using σT = 1.55.

Table 1: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias
µ -3 -4.504973 0.53672034 1.504973
α 2 2.010104 0.01294196 0.010104
β 2.5 1.297291 0.59741468 1.202709
σb 1.225 1.467351 0.25016115 0.242606

Convergence patterns for various parameters obtained using MCEM algorithm
is presented in figure 3.
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Figure 3: Convergence patterns of various parameters
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From figure 3, it can be seen that the estimate of α shows very constant pat-
tern, where as estimates for µ and β show a lot of hiccup at early stages. However
for all parameters the method converges though µ and β show relatively large bias
compared to α and σb. The standard errors are really within the acceptance level.
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Simulation: 2
Data generated using σT = 0.50.

Table 2: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias
µ -3 -4.635835 0.14281614 1.6358
α 2 2.061284 0.01618356 0.061284
β 2.5 1.294264 0.12623253 1.2057
σb 1.225 1.346767 0.04300177 0.1218
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im
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m
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sb

Figure 4: Convergence patterns of various parameters
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Simulation 3:
Data generated using σT = 0.15.

Table 3: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias
µ -3 -4.229542 0.07972108 1.2295
α 2 2.132087 0.01024069 0.132087
β 2.5 2.002448 0.07776745 0.4976
σb 1.225 1.507479 0.07079735 0.2857
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Figure 5: Convergence patterns of various parameters

It is to be noted that for third simulation i.e. when we considered σT = 0.15,
the proposed algorithm performed very well. In this case only the parameter µ
has absolute bias bigger than 1 while rest of the parameters have absolute biases
very small.

This phenomena indicates that proposed algorithm gives good estimates under
small variation of the time-to-event process.
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4 Application to Muscular Dystrophy Syndrome data

This work is motivated by a data set obtained from National Neurosciences Centre,
Kolkata (http://www.nnccalcutta.com/). The data consists of muscle scores of
children suffering from a muscular dystrophy syndrome. This is a genetic disease
affecting only male children. Over different time points, composite muscle scores
(average of ten muscle scores) are considered to be an indicator of quality of
life of these patients. A score near 10 is assumed to be a good one. However,
among 26 patients, only 19 patients are considered for this analysis with at least 4
observations. Along with the composite muscle score, time taken by a patient to
walk 4 steps is also noted. For this time-to-event data, time beyond 60 seconds is
assumed to be censored. A patient with high muscle score can easily walk 4 steps.
This motivates us to use a selection model since the time-to-event data depends
on the longitudinal outcome.

Table 4: Partial Data only for two subjects
Patient Score Climbing_Stair Age_at_time Onset_age

1 P1 4.33 6 7 4
2 P1 4.83 5 7 4
3 P1 3.50 900 10 4
4 P1 3.00 900 11 4
5 P2 3.17 900 8 3
6 P2 3.50 900 8 3
7 P2 3.17 900 8 3
8 P2 2.83 900 8 3

A data frame with 76 rows and 5 columns. Each of 4 successive rows represents
data for the same subject or patient.

• Patient: A factor with levels P1, P2, . . . , P19. Each level represents a par-
ticular patient. There are 19 patients in aggregate.

• Score: Composite muscle score (average of ten muscle scores).

• Climbing_Stair: Time (in seconds) taken by a patient walk 4 steps. Time
beyond 60 seconds is assumed to be censored. A value 900 indicates time is
censored to the right.

• Age_at_time: Age of the patient at the time of study.

17
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• Onset_age: Age of a patient when the disease on him/her was first discov-
ered. This is treated as the only covariate.

For the composite score, a linear mixed effects model is used as,

Scoreij = µ+ α ∗ Onset_ageij + bi + εij

and for time-to-event, an AFT model is used as,

log(Climbing_Stairij) = β + bi

The objective is to obtain the estimates of the parameters µ, α, β and σb by
applying the joint model described in section 4. Summary of the analysis is given
below:

Table 5: Parameter estimates applying the Joint Model
Parameter Estimate Standard Error
µ 3.61647686 0.20449250
α 0.23480275 0.04372608
β 3.96921363 0.07389875
σb 0.01304504 0.28348920

Convergence patterns for various parameters obtained using MCEM algorithm
is presented in figure 6.

From figure 6 it can be seen that initially there are a few hiccups for almost all
parameters. They eventually converge as the number of iteration increased. The
proposed MCEM performed incredibly well.

5 Discussion

Principal objective of this work is to obtain the estimates of the parameters for a
data set on muscular dystrophy syndrome. In simulation studies, we have noticed
that MCEM performed well for fixed values of σT i.e. the standard deviation of
time-to-event variable. But when considering σT as random, sometimes the algo-
rithm produces negative estimate of σT . It is not very strange as it can be judged
theoretically in case of variance estimation problem. It needs further investigation.
To judge the performance of the proposed algorithm coverage probabilities may
also be calculated.
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A Derivation of score function and information matrix of
the joint likelihood

∂

∂µ
log liJ =

ni∑
j=1

(yij − µ− αxij − bi) (13)

∂

∂α
log liJ =

ni∑
j=1

xij(yij − µ− αxij − bi) (14)

∂

∂β
log liJ =

ni∑
j=1

δij
σT

(
log tij − β − bi

σT

)
+

1− δij
σT

 φ
(

log cij−β−bi
σT

)
1− Φ

(
log cij−β−bi

σT

)
 (15)

∂

∂σb
log liJ =

ni∑
j=1

(
− 1

σb
+
b2i
σ3
b

)
(16)

∂2

∂µ2
log liJ = −ni (17)

∂2

∂µ∂α
log liJ = −

n1∑
j=1

xij (18)

∂2

∂µ∂β
log liJ = 0 (19)

∂2

∂µ∂σb
log liJ = 0 (20)

∂2

∂α2
log liJ = −

ni∑
j=1

x2ij (21)

∂2

∂α∂β
log liJ = 0 (22)

∂2

∂α∂σb
log liJ = 0 (23)
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∂2

∂β2
log liJ =

ni∑
j=1

− δij
σ2
T

+
1− δij
σ2
T

 φ
(

log cij−β−bi
σT

)
1− Φ

(
log cij−β−bi

σT

)


×

( log cij − β − bi
σT

)
−

 φ
(

log cij−β−bi
σT

)
1− Φ

(
log cij−β−bi

σT

)



(24)

∂2

∂β∂σb
log liJ = 0 (25)

∂2

∂σ2
b

log liJ =

ni∑
j=1

(
1

σ2
b

− 3b2i
σ4
b

)
(26)

Now, the conditional score vector is given by,

S?θi =


∂
∂µ

log liJ
∂
∂α

log liJ
∂
∂β

log liJ
∂
∂σb

log liJ

 (27)

and also the conditional information matrix by,

I(θ)?i =


∂2

∂µ2
log liJ

∂2

∂µ∂α
log liJ

∂2

∂µ∂β
log liJ

∂2

∂µ∂σb
log liJ

∂2

∂α2 log liJ
∂2

∂α∂β
log liJ

∂2

∂α∂σb
log liJ

∂2

∂β2 log liJ
∂2

∂β∂σb
log liJ

∂2

∂σ2
b

log liJ

 (28)
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B R code for simulation studies

Simulation study is done with the help of R package (ver. 3.2.0, "Full of In-
gredients"), which can be found at http://cran.r-project.org/. R Code for
reproducing the simulation and graphics is presented below.

## Joint Model for Longitudinal & time-to-event data

rm(list = ls())
library(survival)
N <- 25; n <- 4;

##-------TRUE VALUES for generating hypothetical data------##
mu.star <- -3
alpha.star <- 2
b.eta.star <- 2.5
sig.b.star <- sqrt(1.5)
sig.t <- 1.55 #constant
##---------------------------------------------------------##

## covariate matrix
x <- matrix(rnorm(n * N, 3, sqrt(2)), N, n, byrow = TRUE)
rownames(x) <- paste("P:",1:25)
colnames(x) <- c("Jan", "Feb", "Mar", "Apr")

## Matrix of all 1’s
J <- matrix(1, N, n, byrow = TRUE)

## Matrix of random effects with
## identical columns (unconditional pdf of b)
B.RAND <- matrix(rnorm(N, 0, sig.b.star), N, n)

##---------------Longitudinal data generation-------------##
y <- mu.star * J +

alpha.star * x +
B.RAND +
matrix(rnorm(N*n, 0, 1), N, n, byrow = T)

##---------------Survival data generation----------------##
tau <- 40
truetime <- exp(b.eta.star + B.RAND) #actual time
#censored time
cstime <- matrix(runif(N*n, 0, tau), N, n, byrow = T)
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time <- pmin(truetime, cstime) #observed time
event <- time == truetime
del <- event * 1
## log time points beyond which censoring takes place
ln.C <- log(cstime)
## Vector of log(observed event-times)
ln.T <- log(time)
(p <- length(event[event == F]) / (N*n))

## Initial choices for MCEM Algorithm
Y <- as.vector(t(y))
X <- as.vector(t(x))
fit.1 <- lm(Y ~ X)
mu <- fit.1[["coefficients"]][["(Intercept)"]]
alpha <- fit.1[["coefficients"]][["X"]]
##-------------------------------------------------------##
Time <- as.vector(t(time)) #follow-up time vector
Del <- as.vector(t(del))
survobj <- Surv(Time, Del) #survival object
#AFT model with no covariate
aft.fit <- survreg(survobj ~ 1,dist = "lognormal")
b.eta <- aft.fit[["coefficients"]][["(Intercept)"]]
##-------------------------------------------------------##
sig.b <- sd(B.RAND[,1])
sig.t <- 1.55 #constant

(theta.ini <- c(mu, alpha, b.eta, sig.b))
##-------------------------------------------------------##
Q <- function(theta.ini)
{

mu <- theta.ini[1]
alpha <- theta.ini[2]
b.eta <- theta.ini[3]
sig.b <- theta.ini[4]

## Functions of differentials ##
##----------------------------------------------------##
e1 <- function(x, y, b){y - mu - alpha * x - b}
e2 <- function(ln.t,b){(ln.t - b.eta - b)/sig.t}
e3 <- function(ln.c,b){(ln.c - b.eta - b)/sig.t}

d.mu.1 <- function(x, y, b)
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{
sum(e1(x, y, b))

}

d.alpha.1 <- function(x, y, b)
{

sum(x * e1(x, y, b))
}

d.b.eta.1 <- function(ln.t, ln.c, b, delta)
{

sum((delta * sig.t**(-1) * e2(ln.t,b)) +
(1 - delta) * sig.t**(-1) *
dnorm(e3(ln.c,b)) *
pnorm(e3(ln.c,b),lower.tail = F)**(-1))

}

d.sig.b.1 <- function(b)
{

sum(-sig.b**(-1) + (b**2 * sig.b**(-3)))
}

##-----------------------------------------------------##
d.mu.2 <- -n

d.mualpha.2 <- function(x)
{

-sum(x)
}

d.mub.eta.2 <- 0

d.musig.b.2 <- 0

d.alpha.2 <- function(x)
{

-sum(x**2)
}

d.alphab.eta.2 <- 0

d.alphasig.b.2 <- 0
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d.b.eta.2 <- function(ln.c, b, delta)
{

sum(-delta * sig.t**(-2) +
(1-delta) * sig.t**(-2) * e3(ln.c,b) *
dnorm(e3(ln.c,b)) *
pnorm(e3(ln.c,b),lower.tail = F)**(-1) -
(1-delta) * sig.t**(-2) * dnorm(e3(ln.c,b))**2 *
pnorm(e3(ln.c,b),lower.tail = F)**(-2))

}

d.b.etasig.b.2 <- 0

d.sig.b.2 <-function(b)
{

sum(sig.b**(-2) - 3 * b**2 * sig.b**(-4))
}

## Metropolis sampler for simulating b’s for each i
rrandeff <- function(Nsim)
{

h <- function(b)
{

prod(dnorm(b/sig.b) *
dnorm((ln.T[i,] - b.eta - b)/sig.t)**del[i,] *
pnorm(((ln.C[i,] - b.eta - b)/sig.t),
lower.tail = F)**
(1-del[i,]) *
dnorm((y[i,] - mu - alpha*x[i,] - b)))

}

t <- 1
s <- rep(0, Nsim)
s[1] <- rnorm(1, 5, sig.b) #initialization

for(t in 2:Nsim)
{

sprime <- rnorm(1, 5, sig.b) #candidate observation
a <- h(sprime)/h(s[t-1])
if(is.nan(a)){a <- 0; nan <- 1}
acprob <- min(1, a) #acceptance probability
u <- runif(1, 0, 1)
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if(u < acprob) s[t] <- sprime else s[t] <- s[t-1]
}
return(s)

}

##------------------------------------------------------##

#Unconditional Score Vector
UCOND.S <- rep(0, 4)
#Unconditional Information Matrix
UCOND.I <- array(0, dim = c(4, 4))

R <- 10000
burn <- 1000

for(i in 1:N)
{

COND.b <- rrandeff(R)
##----------------------------------------------------##
COND.S <- rep(0, 4)
COND.I <- array(0, dim = c(4, 4))
D <- array(0, dim = c(14, (R - burn)))
for(j in 1:ncol(D))
{

D[,j] <- c(d.mu.1(x[i,], y[i,], COND.b[burn + j]),
d.alpha.1(x[i,], y[i,],

COND.b[burn + j]),
d.b.eta.1(ln.T[i,], ln.C[i,],

COND.b[burn + j], del[i,]),
d.sig.b.1(COND.b[burn + j]),
##---------------------------------------##
d.mu.2,
d.mualpha.2(x[i,]),
d.mub.eta.2,
d.musig.b.2,
d.alpha.2(x[i,]),
d.alphab.eta.2,
d.alphasig.b.2,
d.b.eta.2(ln.C[i,], COND.b[burn + j],

del[i,]),
d.b.etasig.b.2,
d.sig.b.2(COND.b[burn + j])
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)
}
W <- apply(D, 1, mean)
COND.S <- W[1:4] #Conditional Score Vector
UCOND.S <- UCOND.S + COND.S

##---------------------------------------------------##
COND.I[1,1] <- W[5]
COND.I[1,2] <- COND.I[2,1] <- W[6]
COND.I[1,3] <- COND.I[3,1] <- W[7]
COND.I[1,4] <- COND.I[4,1] <- W[8]
COND.I[2,2] <- W[9]
COND.I[2,3] <- COND.I[3,2] <- W[10]
COND.I[2,4] <- COND.I[4,2] <- W[11]
COND.I[3,3] <- W[12]
COND.I[3,4] <- COND.I[4,3] <- W[13]
COND.I[4,4] <- W[14] #Conditional Information Matrix
##--------------------------------------------------##
UCOND.I <- UCOND.I + COND.I

}
ucond <- list(score = UCOND.S, inf = -UCOND.I)
return(ucond)

}

niter <- 80 # no. of iteration
res <- array(0, dim = c(niter,4))
colnames(res) <- c("mu", "alpha", "b.eta", "sig.b")

for(k in 1:niter)
{

theta <- theta.ini + solve(Q(theta.ini)$inf) %*%
Q(theta.ini)$score

## Updating estimates...
mu <- theta[1]
alpha <- theta[2]
b.eta <- theta[3]
sig.b <- theta[4]
theta.ini <- c(mu, alpha, b.eta, sig.b)
res[k,] <- theta.ini
print(res[k,])

}
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ul <- max(apply(res, 2, max)) # y-axis upper limit
ll <- min(apply(res, 2, min)) # y-axis lower limit

par(mar=par()$mar+c(0,0,0,3.5), xpd = T, cex = 0.95,
family = "serif",
font.axis = 3, font.lab = 3, font.main = 1)

plot(1:niter, res[,1], ylim = c(ll, ul), type = "l",
lty = 1, lwd = 1.5,
main = "Performance of the proposed algorithm",
xlab = "Iteration Number",
ylab = "Estimates")

lines(1:niter, res[,2], lty = 2, lwd = 1.5)
lines(1:niter, res[,3], lty = 3, lwd = 1.5)
lines(1:niter, res[,4], lty = 4, lwd = 1.5)
legend("bottomright", inset=c(-0.5,0),

legend = c(expression(mu),
expression(alpha),
expression(beta),
expression(sigma[b])),

lty = 1:4, lwd = rep(1.5,4), bty = "n")

## Standard error of the estimates
std.err <- apply(res, 2, sd)

##------------------------END----------------------------##
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C R Code for data preparation and analysis

setwd("C:\\Users\\Koushik\\Dropbox\\M.Sc_Project\\Project~Code")
rm(list = ls(all = TRUE))
library(nlme)
library(survival)
N <- 19; n <- 4
#********************** Data Preparation ********************
DMD <- read.csv("DMD.csv", header = T)
#View(DMD)
attach(DMD)
p <- unique(Patient)
v <- NULL
##***********************************************************
for(i in p)
{

print(i)
u <- subset(DMD, Patient == i)
v <- c(v, length(u$Patient)) # vector of no. of patients

}
#v
max.len <- max(v)
##***********************************************************

## For muscle score
y <- matrix(0, nrow = length(p),

ncol = max.len, byrow = T)
rownames(y) <- p
for(i in p)
{

u <- subset(DMD, Patient == i)
y[i,] <- c(u$Score,

rep(NA, max.len - length(u$Patient)))
}

## For onset age
x <- matrix(0,

nrow = length(p), ncol = max.len, byrow = T)
rownames(x) <- p
for(i in p)
{

u <- subset(DMD, Patient == i)
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x[i,] <- c(u$Onset_age,
rep(NA, max.len - length(u$Patient)))

}

## For Climbing stair
time <- matrix(0, nrow = length(p),

ncol = max.len, byrow = T)
rownames(time) <- p
for(i in p)
{

u <- subset(DMD, Patient == i)
time[i,] <- c(u$Climbing_Stair,

rep(NA, max.len - length(u$Patient)))
}

detach(DMD)

## Censoring indicator
del <- matrix(0, nrow = 19, ncol = 4)
for(i in 1:nrow(time))
{

for(j in 1:ncol(time))
{

if(time[i,j] == 900)
del[i,j] <- 0

else del[i,j] <- 1
}

}

#********************** Data Analysis ***********************
ln.T <- log(time)
ln.C <- log(matrix(60, nrow = N, ncol = n))

p1 <- rep(p, each = 4) # subject levels
data.test <- data.frame(Subject = p1,

LongScore = as.vector(t(y)),
OnsetAge = as.vector(t(x)))

data.test <- groupedData(LongScore ~ OnsetAge | Subject,
data = data.test)

fit.1 <- lme(LongScore ~ OnsetAge, data = data.test,
random = ~ 1, method = "ML")
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## Initial choices for MCEM Algorithm
mu <- 4.37499738
alpha <- 0.0833338
##--------------------------------------------------------##
#follow-up time vector
Time <- as.vector(t(time))
Del <- as.vector(t(del))
#survival object
survobj <- Surv(Time, Del)

#AFT model with no covariate
aft.fit <- survreg(survobj ~ 1,dist = "lognormal")
b.eta <- aft.fit[["coefficients"]][["(Intercept)"]]
##--------------------------------------------------------##
sig.b <- 1.259261
sig.t <- 4.45 #constant

(theta.ini <- c(mu, alpha, b.eta, sig.b))
##-------------------------------------------------------##
Q <- function(theta.ini)
{

mu <- theta.ini[1]
alpha = theta.ini[2]
b.eta = theta.ini[3]
sig.b = theta.ini[4]

## Functions of differentials ##
##-----------------------------------------------------##
e1 <- function(x, y, b){y - mu - alpha * x - b}
e2 <- function(ln.t,b){(ln.t - b.eta - b)/sig.t}
e3 <- function(ln.c,b){(ln.c - b.eta - b)/sig.t}

d.mu.1 <- function(x, y, b)
{

sum(e1(x, y, b))
}

d.alpha.1 <- function(x, y, b)
{

sum(x * e1(x, y, b))
}
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d.b.eta.1 <- function(ln.t, ln.c, b, delta)
{

sum((delta * sig.t**(-1) * e2(ln.t,b)) +
(1 - delta) * sig.t**(-1) *
dnorm(e3(ln.c,b)) *
pnorm(e3(ln.c,b),lower.tail = F)**(-1))

}

d.sig.b.1 <- function(b)
{

sum(-sig.b**(-1) + (b**2 * sig.b**(-3)))
}

##------------------------------------------------------##
d.mu.2 <- -n

d.mualpha.2 <- function(x)
{

-sum(x)
}

d.mub.eta.2 <- 0

d.musig.b.2 <- 0

d.alpha.2 <- function(x)
{

-sum(x**2)
}

d.alphab.eta.2 <- 0

d.alphasig.b.2 <- 0

d.b.eta.2 <- function(ln.c, b, delta)
{

sum(-delta * sig.t**(-2) +
(1-delta) * sig.t**(-2) * e3(ln.c,b) *
dnorm(e3(ln.c,b)) *
pnorm(e3(ln.c,b),lower.tail = F)**(-1) -
(1-delta) * sig.t**(-2) * dnorm(e3(ln.c,b))**2 *
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pnorm(e3(ln.c,b),lower.tail = F)**(-2))
}

d.b.etasig.b.2 <- 0

d.sig.b.2 <-function(b)
{

sum(sig.b**(-2) - 3 * b**2 * sig.b**(-4))
}

## Metropolis sampler for simulating b’s for each i
rrandeff <- function(Nsim)
{

h <- function(b)
{

prod(dnorm(b/sig.b) *
dnorm((ln.T[i,] - b.eta - b)/sig.t)**del[i,] *
pnorm(((ln.C[i,] - b.eta - b)/sig.t),
lower.tail = F)**
(1-del[i,]) *
dnorm((y[i,] - mu - alpha*x[i,] - b)))

}

t <- 1
s <- rep(0, Nsim)
s[1] <- rnorm(1, 0, sig.b) #initialization

for(t in 2:Nsim)
{

sprime <- rnorm(1, 10, sig.b) #candidate observation
a <- h(sprime)/h(s[t-1])
if(is.nan(a)){a <- 0; nan <- 1}
acprob <- min(1, a) #acceptance probability
u <- runif(1, 0, 1)
if(u < acprob) s[t] <- sprime else s[t] <- s[t-1]

}
return(s)

}

##---------------------------------------------------------##

#Unconditional Score Vector
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UCOND.S <- rep(0, 4)
#Unconditional Information Matrix
UCOND.I <- array(0, dim = c(4, 4))

R <- 10000
burn <- 1000

for(i in 1:N)
{

COND.b <- rrandeff(R)
##------------------------------------------------------##
COND.S <- rep(0, 4)
COND.I <- array(0, dim = c(4, 4))
D <- array(0, dim = c(14, (R - burn)))
for(j in 1:ncol(D))
{

D[,j] <- c(d.mu.1(x[i,], y[i,], COND.b[burn + j]),
d.alpha.1(x[i,], y[i,],

COND.b[burn + j]),
d.b.eta.1(ln.T[i,], ln.C[i,],

COND.b[burn + j], del[i,]),
d.sig.b.1(COND.b[burn + j]),
##-----------------------------------------##
d.mu.2,
d.mualpha.2(x[i,]),
d.mub.eta.2,
d.musig.b.2,
d.alpha.2(x[i,]),
d.alphab.eta.2,
d.alphasig.b.2,
d.b.eta.2(ln.C[i,], COND.b[burn + j],

del[i,]),
d.b.etasig.b.2,
d.sig.b.2(COND.b[burn + j])

)
}
W <- apply(D, 1, mean)
#Conditional Score Vector
COND.S <- W[1:4]
UCOND.S <- UCOND.S + COND.S

##-----------------------------------------------------##

34



COND.I[1,1] <- W[5]
COND.I[1,2] <- COND.I[2,1] <- W[6]
COND.I[1,3] <- COND.I[3,1] <- W[7]
COND.I[1,4] <- COND.I[4,1] <- W[8]
COND.I[2,2] <- W[9]
COND.I[2,3] <- COND.I[3,2] <- W[10]
COND.I[2,4] <- COND.I[4,2] <- W[11]
COND.I[3,3] <- W[12]
COND.I[3,4] <- COND.I[4,3] <- W[13]
COND.I[4,4] <- W[14] #Conditional Information Matrix
##-----------------------------------------------------##
UCOND.I <- UCOND.I + COND.I

}
ucond <- list(score = UCOND.S, inf = -UCOND.I)
return(ucond)

}

niter <- 80 # no. of iteration
res <- array(0, dim = c(niter,4))
colnames(res) <- c("mu", "alpha", "b.eta", "sig.b")

for(k in 1:niter)
{

theta <- theta.ini + solve(Q(theta.ini)$inf) %*%
Q(theta.ini)$score

## Updating estimates...
mu <- theta[1]
alpha <- theta[2]
b.eta <- theta[3]
sig.b <- theta[4]
theta.ini <- c(mu, alpha, b.eta, sig.b)
res[k,] <- theta.ini
print(res[k,])

}

ul <- max(apply(res, 2, max)) # y-axis upper limit
ll <- min(apply(res, 2, min)) # y-axis lower limit

par(mar=par()$mar+c(0,0,0,3.5), xpd = T, cex = 0.95,
family = "serif",
font.axis = 3, font.lab = 3, font.main = 1)
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plot(1:niter, res[,1], ylim = c(ll, ul),
type = "l", lty = 1, lwd = 1.5,
main = "Performance of the proposed algorithm",
xlab = "Iteration Number",
ylab = "Estimates")

lines(1:niter, res[,2], lty = 2, lwd = 1.5)
lines(1:niter, res[,3], lty = 3, lwd = 1.5)
lines(1:niter, res[,4], lty = 4, lwd = 1.5)
legend("bottomright", inset=c(-0.5,0),

legend = c(expression(mu),
expression(alpha),
expression(beta),
expression(sigma[b])),

lty = 1:4, lwd = rep(1.5,4), bty = "n")

## Standard error of the estimates
std.err <- apply(res, 2, sd)

##---------------------------END--------------------------##
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