Joint Modelling of Longitudinal Mixed Effects and Accelerated Failure Time Model

Koushik Khan

M.Sc.-Sem-IV, Roll No.: MSC (Sem-IV) - Stat - 223

Department of Statistics Visva-Bharati Santiniketan, India

Outline

- ➢ Some prerequisites
- ➢ What is *Joint Model (JM)*?
- ➢ Models for the individual components
- ➢ Construction of the likelihood
- ➢ Monte Carlo EM (MCEM) based estimation technique
- \triangleright MCEM algorithm in a nutshell
- ➢ Simulation and analysis of a real data set
- ➢ Discussions
- ➢ References

From now I will call it JM

Some Prerequisites

❑ **What is longitudinal data ?**

Repeated measurements of one or more variable, taken on several (small in number) time points for many subjects, involved in an experiment, constitute a longitudinal data.

❑ **Example:**

- i. Weekly lowest temperature of 50 largest cities in a month.
- ii. Daily blood pressure measurements of 25 patients (say) during a week.
- *Note: Since measurements are taken on the same subject (and each subject thereafter, such observations are correlated)*

❑ **What is time-to-event ?**

As the name suggests, it is a variable denoting the time needed up to the occurrence of an event.

❑ **Example:**

- i. Time needed to fail for an electronic device.
- ii. Time to recover from a disease.
- iii. Duration of life before death of a patient after receiving a drug.

• *Note: Time-to-event r.v. should have distribution with positive range*

Definition & classification of JM

- ❑ Suppose we observe two continuous processes e.g. longitudinal Y and time-to-event T. By joint modelling we mean to consider their joint likelihood based on available data, to find the estimates of the parameters involved.
- There are two different strategies to factorize the joint density of (Y, T) (Little (1995)) based on model interpretations, and consequently, suitability for individual problems.
- ❑ These are *Selection Model* and *Pattern Mixture Model*

Selection model Pattern mixture model $[\boldsymbol{Y},T] = [T|\boldsymbol{Y}|]\boldsymbol{Y}$ $[\boldsymbol{Y},\boldsymbol{T}]=[\boldsymbol{Y}|\boldsymbol{T}][\boldsymbol{T}]$

Selection model would answer the question regarding how one's response on the severity of the disease affects death (failure).

❑ *Selection model* will be used for rest of the discussion.

Justification & Area of application

- ❑ In clinical & other follow-up studies longitudinal data and survival data frequently arise together.
- ❑ For example, collecting information on blood pressure repeatedly over time and recording the time to recover form a disease for several patients.
- ❑ Logical to think that these two processes are associated in some ways.
- ❑ Separate analyses may lead to inefficient inferences.
- ❑ Joint models of longitudinal and survival data, on the other hand, incorporate all information simultaneously and may provide valid and efficient inferences.

Specifications of the Models

we define,

- 1; if actual event time is recorded δ_{ij} =
	- $0;$ if event time is censored to the right

Roll of random effects

❑ Longitudinal observations, for a particular subject, are necessarily dependent. ❑ Random effects are incorporated to make the longitudinal outcomes as well as the two models dependent.

Construction of the joint likelihood

❑ Joint likelihood of longitudinal and time-to-event for ith subject is given by, ω .

$$
L_i(\boldsymbol{\theta}) = \prod_{j=1}^{n_i} f(y_{ij}, \log t_{ij} | \boldsymbol{\theta})
$$

=
$$
\int_{b_i} \prod_{j=1}^{n_i} g_1(\log t_{ij} | y_{ij}, b_i) \times g_2(y_{ij} | b_i) \times \pi(b_i) db_i
$$

=
$$
\int_{b_i} \prod_{j=1}^{n_i} g_1(\log t_{ij} | b_i) \times g_2(y_{ij} | b_i) \times \pi(b_i) db_i
$$

=
$$
\int_{b_i} l_{iJ} db_i
$$

❑ Finally,

$$
L(\boldsymbol{\theta}) = \prod_{i=1}^N L_i(\boldsymbol{\theta})
$$

❑ It can be shown that,

$$
\begin{pmatrix}\ni_{iJ} \propto \prod_{j=1}^{n_i} \left\{ \frac{1}{\sigma_T} \phi \left(\frac{\log t_{ij} - \beta - b_i}{\sigma_T} \right) \right\}^{\delta_{ij}} \\
\times \left\{ 1 - \Phi \left(\frac{\log c_{ij} - \beta - b_i}{\sigma_T} \right) \right\}^{1 - \delta_{ij}} \\
\times \phi \left(y_{ij} - \mu - \alpha x_{ij} - b_i \right) \\
\times \frac{1}{\sigma_b} \phi \left(\frac{b_i}{\sigma_b} \right)\n\end{pmatrix}
$$
\n
\ntoo complicated to
\nhandle mathematically\nwe need this

Needs numerical optimization techniques !

MCEM based estimation technique, a tricky way out !

 \Box We use *Fisher's Scoring* method to get the m.l.e of $\theta = (\mu, \alpha, \beta, \sigma_b)'$

❑ **Score vector: condn. density of** |,

So that,

$$
S_{\theta} = \sum_{i=1}^{N} E_{b_i|y_{ij}, \log t_{ij}} \left(\frac{\partial}{\partial \theta} \log l_{iJ} \right)
$$
 condn. score
=
$$
\sum_{i=1}^{N} E_{b_i| \text{data}} (S_{\theta i}^{\star})
$$

❑ **Information matrix:**

$$
I(\theta) = \sum_{i=1}^{N} I(\theta)_{i}^{*} \longleftarrow \text{condn.}
$$
 information matrix

But how to compute the expectations ?

- ❑ It can't be always computed exactly !
- ❑ But can be approximated.

Thanks to Markov Chains Monte Carlo Technique !

First we simulate random observations from $h(b_i|y_{ij}, \log t_{ij})$ using **Metropolis Sampler**

Use these observations to approximate the expectation as follows:

$$
E_{b_i|y_{ij},\log t_{ij}}\left(\boldsymbol{S_{\theta i}^{\star}}\right) \simeq \frac{1}{(R - burnin)}\sum_{\ell=1}^{(R - burnin)} \boldsymbol{S_{\theta i}^{\star}}^{(\ell)}
$$

❑ Hence,

$$
S_{\theta} \simeq \sum_{i=1}^{N} \frac{1}{(R - burnin)} \sum_{\ell=1}^{(R - burnin)} S_{\theta i}^{\star} {(\ell)}
$$

Iterative Maximization

❑ Use iterative maximization algorithm successively to maximize that **complicated likelihood**

$$
\left(\overbrace{\boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}+\boldsymbol{I}\left(\boldsymbol{\theta}^{(k)}\right)^{-1}\boldsymbol{S}\left(\boldsymbol{\theta}^{(k)}\right)}^{-1}\right)
$$

❑ **And wait for convergence**

MCEM algorithm in a nutshell

Step 1. Choose an initial estimate of θ , say, $\theta^{(0)}$

(using some suitable techniques)

Step 2. Set $k = 0$

Step 3. Generate R (10000, say) observations from $h(b_i|y_{ij}, log(t_{ij}))$ using Metropolis Sampler (a lot of difficulties involved!) taking some suitable proposal (*Markov Chain*)

 Step 4. Approximate the expectations involved in score function and information matrix (*E-step withMonte Carlo*)

 Step 5. Update the estimate as,

 $\theta^{(k+1)} = \theta^{(k)} + [I(\theta^{(k)})]^{-1}$ $\mathcal{S}\big(\theta^{(k}%{\delta)}\big)^{k}$ (*M-step with Fisher's scoring*)

Step 6. Set $k = k + 1$

 Step 7. Continue **steps 2-6** till the convergence

Simulation Studies

- Simulation studies are performed for three choices of σ_T . N & n are kept fixed at 25 & 4 respectively.
- Study 1: Data generated by taking $\sigma_T = 1.55$

Performance of the proposed algorithm

- \checkmark # of iteration: 80
- \checkmark Estimate of α shows almost constant pattern.
- \checkmark a& σ_b has biases closed to zero.

Study 2: Data generated by taking $\sigma_T = 0.50$

Performance of the proposed algorithm

 \checkmark # of iteration: 50

α β

- \checkmark Estimate of α shows usual pattern .
- \checkmark now μ , β and σ_b has less fluctuations near the starting area

Study 3: Data generated by taking $\sigma_T = 0.15$

Table 1: Parameter estimates obtained using MCEM algorithm Parameter True value Estimate **Standard Error** Absolute bias -3 0.07972108 1.2295 -4.229542 μ 0.132087 $\overline{2}$ 2.132087 0.01024069 α β 2.002448 0.07776745 0.4976 2.5 1.225 1.507479 0.07079735 0.2857 σ_b

 α

 σ_{b}

Performance of the proposed algorithm

- \checkmark # of iteration: 80
- \checkmark μ behaves as usual
- \checkmark after 7 or 8 iterations
- σ_b is more or less

constant

Analysis of Muscular Dystrophy Syndrome data

- ❑ Data set consists of observations on composite muscle score (i.e. average of 10 muscle scores, which are responsible for walking).
- ❑ Two time to event indicators are also observed over different time points- time taken to walk 4 steps and time to get up from lying state.
- ❑ Objective is to characterize the relationship between failure time and the longitudinal outcomes.
- ❑ Only **time to walk 4 steps** is considered (advised by the doctors) in the present work.
- **► Data Description [click here](DMD.csv)**

❑ Estimates of the parameters with standard errors are given below:

Table 1: Parameter estimates applying the Joint Model

❑ Performance of the MCEM algorithm for real data is shown in the following figure:

Performance of the proposed algorithm

Iteration Number

Discussion

- ❑ Principal objective of this work is to obtain the estimates of the parameters for a data set on **muscular dystrophy syndrome**.
- ❑ We have noticed that MCEM performed well for fixed values of σ_T i.e. the standard deviation of time-to-event variable.
- \Box But when considering σ_T as random, sometimes the algorithm produces negative estimate of σ_T .
- ❑ Random errors in longitudinal model are standardized.
- ❑ In longitudinal model we have incorporated only one covariate, however more than covariate may also be used.
- ❑ Instead of linear, some suitable non-linear functions may also be used in both the models.

Some Selected References

- ❑ Chakraborty, A. and Das, K. (2010). Inferences for joint modelling of repeated ordinal scores and time to event data. Computational and Mathematical Methods in Medicine, **11**, 281-295
- ❑ Little, R. (1995). Modeling the dropout mechanism in repeated measures studies. Journal of the American Statistical Association, **90**, 1112-1121.
- ❑ Guo, X. and Carlin, B.P. (2004). Separate and joint modelling of longitudinal and event time data using standard computer packages. The American Statistician, **58**, 16-24.
- ❑ Henderson, R., Diggle, P.J. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data, Biometrics, **1**, 465-80.
- ❑ Hogan, J. and Laird, N. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, **16**, 239-258.
- ❑ Pawitan, Y. and Self, S. (1993). Modelling disease marker processes in aids. Journal of the American Statistical Association, **88**, 719-726.
- ❑ Schluchter, M.D. (1992). Methods for the analysis of informatively censored longitudinal dada. Statistics in Medicine, **11**, 1861-1870.

