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From now I will
call it JM



Some Prerequisites

0 What is longitudinal data ?

Repeated measurements of one or
more variable, taken on several
(small in number) time points for
many subjects, involved in an
experiment, constitute a
longitudinal data.

0 Example:

1.  Weekly lowest temperature of
50 largest cities in a month.

1.  Daily blood pressure
measurements of 25 patients
(say) during a week.

 Note: Since measurements
are taken on the same subject
(and each subject thereafter,
such observations are
correlated)

J What is time-to-event ?

As the name suggests, it is a
variable denoting the time needed
up to the occurrence of an event.

0 Example:

1. Time needed to fail for an
electronic device.

11. Time to recover from a disease.

111. Duration of life before death of
a patient after receiving a
drug.

» Note: Time-to-event r.v.
should have distribution with
positive range



Definition & classification of JIM

Suppose we observe two continuous processes e.g. longitudinal Y and
time-to-event T. By joint modelling we mean to consider their joint
likelihood based on available data, to find the estimates of the

parameters involved.

There are two different strategies to factorize the joint density of (Y, T)
(Little (1995)) based on model interpretations, and consequently,
suitability for individual problems.

These are Selection Model and Pattern Mixture Model

Selection model Pattern maxture model

Y. T|=[T|YlY] ) [Y,T|=[Y[T|T

Selection mod¢l would answer the question regarding how one’s
response on the severity of the disease affects death (failure).

Selection model will be used for rest of the discussion.



Justification & Area of application

4 In clinical & other follow-up studies longitudinal data and
survival data frequently arise together.

O For example, collecting information on blood pressure
repeatedly over time and recording the time to recover
form a disease for several patients.

d Logical to think that these two processes are associated 1n
some ways.

O Separate analyses may lead to inefficient inferences.

O Joint models of longitudinal and survival data, on the
other hand, incorporate all information simultaneously
and may provide valid and efficient inferences.



Specifications of the Models

0 Longitudinal model:
[ It 1s often modelled as,

Yij =p+oar;+bi+e;H)1<53<n;, 1<i<N

N: Number of subjects involved
n;: Number of longitudinal observation
x;;: Value of a single covariate
b;: Shared random effect, ~ N(0, 07) AFT model with
€;5: Standardised random error, ~ N(0,1) log-normal distn.

1 Time-to-event model:

T;j: min (T5, Cij), T75: Actual time

13 Y]
b;: Shared random effect, C};;: Censoring cut-off

N((B + bz)a O-ZQF)

we define, _ o
0;j = 1; if actual event time is recorded

0; if event time is censored to the right



Roll of random effects

0 Longitudinal observations, for a particular subject, are necessarily dependent.

0 Random effects are incorporated to make the longitudinal outcomes as well as
the two models dependent.

-

Longitudinal Data

Yi = {wij(tij); 1 < j < n;} Ty; = min (T5,Cs;5) ;1 < j < ny

Survival Data

@37 (]

e.g. Linear
mixed-effects
model

e.g. Acceler-
ated failure time
model

Subject-specific random effects

bi ~ N(0,0'g)




Construction of the joint likelihood

O Joint likelihood of longitudinal and time-to-event for ith subject is
given by,

Li(0) = ][ f(yij,logt;|6)
j:
- / H (10851915 bs) X 92 iz b) x (b)db,

= / Hg1 logti;|bi) X g2(yi;]bi) x w(b;)db;
71=1

= / Li.sdb;
b;

O Finally, N

= HLz'(B)



Continued...

d It can be shown that,

lr,:JOC

/ - { 1 ¢(logtij

v {1_(1) (logcij —
orT

X (Yij —

o

5b-)}1_5”

p— axi; — b;)

too complicated to
handle mathematically

Needs numerical optimization

techniques !

but actually
we need this



MCEM based estimation technique, a tricky

way out !
QO We use Fisher’s Scoring method to get the m.l.e of 8 = (i, «, 3, 0%)’
O Score vector: S 9, L(8)
o - fi‘? e condn. density
0 li g of b;|y;;, log t;;
_ 7 1ogl; db; j i
; {/z;- (39 o8 J) ) I, Liadbi }

N

0
— Z{/b (8—910glu> X h(bi|yija10gtij)dbi}

=1

So that, al J condn. score
Se = Z Ebi|yijalog Lij (_ log lmr) i

i=1 vector
N /
Z B, |data (S8;)

 Information matrix:

condn.

N ¢
1(0) = Zizl 1(6); information matrix



But how to compute the expectations ?

A It can’t be always computed exactly !
d But can be approximated.

Thanks to Markov Chains Monte Carlo Technique !

A First we simulate random observations from % (b;|y;;,logt;;) using
Metropolis Sampler

1 Use these observations to approximate the expectation as follows:

(R—burnin)

i L )
Ebi|yij,10gtij (SBZ) = (R . burmn) Z SB?,(
O Hence,

(R—burnin)

N
* (£)
g R — burnm) Z Soi

(=1




Iterative Maximization

O Use iterative maximization algorithm successively to maximize that
complicated likelihood

Fisher’s Scoring Method

0 And wait for convergence



MCEM algorithm in a nutshell

Step 1. Choose an initial estimate of 8, say, §(®
(using some suitable techniques)
Step 2. Set k=0

Step 3. Generate R (10000, say) observations from h(b;|y;;, log(t;;))

using Metropolis Sampler (a lot of difficulties involved!) taking some
suitable proposal (Markov Chain)

Step 4. Approximate the expectations involved in score function and
information matrix (£-step withMonte Carlo)

Step 5. Update the estimate as,
gk+1) — gl 4 [[(g(k))]_lg(g(k))
(M-step with Fisher’s scoring)
Step 6. Set k=k +1
Step 7. Continue steps 2-6 till the convergence



Simulation Studies

Simulation studies are performed for three choices of 0. N & n are kept fixed
at 25 & 4 respectively.

Study 1: Data generated by taking ot = 1.55

Table 1: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias

7 -3 -4.504973 0.53672034 1.504973
o 2 2.010104 0.01294196 0.010104
3 2.0 1.297291 0.59741468 1.202709
b 1.225  1.467351 0.25016115 0.242606

Performance of the proposed algorithm

e e v # of iteration: 80

R v' Estimate of @ shows almost
constant pattern.

v a&oy, has biases closed to

. Zero.

Estimates

I I I I I
0 20 40 6o &0

Iteration Number



Continued...

 Study 2: Data generated by taking oy = 0.50

Table 1: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias

[ -3 -4.635835 0.14281614 1.6358
a 2 2061284 0.01618356 0.061284
o] 2.5 1.294264 0.12623253 1.2057
Op 1.225  1.346767 0.04300177 0.1218

Performance of the proposed algorithm

v' # of 1iteration: 50
A A v' Estimate of a shows
s usual pattern .

v' now u, B and o, has
- less fluctuations near
the starting area

Exiimeaies

EAL

Iteration Number



Continued...

 Study 3: Data generated by taking oy = 0.15

Table 1: Parameter estimates obtained using MCEM algorithm
Parameter True value Estimate Standard Error Absolute bias

il -3 -4.229542 0.07972108 1.2295
o 2 2.132087 0.01024069 0.132087
I5; 2.5 2.002448 0.07776745 0.4976
o 1.225  1.507479 0.07079735 0.2857
Performance of the proposed algorithm
A T v’ # of iteration: 80
ST v" u behaves as usual

v’ after 7 or 8 iterations
g3, 18 more or less
) constant

CRE N

Iteration Number



Analysis of Muscular Dystrophy
Syndrome data

Data set consists of observations on composite muscle score (i.e.
average of 10 muscle scores, which are responsible for walking).

Two time to event indicators are also observed over different time
points- time taken to walk 4 steps and time to get up from lying state.

Objective 1s to characterize the relationship between failure time and
the longitudinal outcomes.

Only time to walk 4 steps 1s considered (advised by the doctors) in
the present work.

Data Description click here


DMD.csv

Continued...

O Estimates of the parameters with standard errors are given below:

Table 1: Parameter estimates applying the Joint Model
Parameter  Estimate  Standard Error

1 3.61647686 0.20449250
o 0.23480275 0.04372608
B 3.96921363 0.07389875
op 0.01304504 0.28348920

O Performance of the MCEM algorithm for real data is shown in the following
figure:

Performance of the proposed algorithm
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Discussion

Q Principal objective of this work is to obtain the estimates of the
parameters for a data set on muscular dystrophy syndrome.

1 We have noticed that MCEM performed well for fixed values of
or 1.e. the standard deviation of time-to-event variable.

d But when considering o, as random, sometimes the algorithm
produces negative estimate of o7 .

d Random errors in longitudinal model are standardized.

0 In longitudinal model we have incorporated only one covariate,
however more than covariate may also be used.

O Instead of linear, some suitable non-linear functions may also be
used 1n both the models.
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Thank You !
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